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1 Introduction

This paper considers seven models of growth in which the instantaneous utility
depends on consumption and on the level of the capital stock. The inclusion
of capital in utility constitutes an innovative contribution of this paper. Stan-
dard models of growth assume that utility depends only on consumption (see,
for example, Barro and Sala-i-Martin, 1995). In real business cycle models, util-
ity depends on consumption and leisure (see, among many others, Kydland and
Prescott, 1982, and King, Plosser, and Rebelo, 1988). Although these approxima-
tions can be satisfactory in some respects, they do not provide a full description
of reality. One possibility of a better description of reality is the inclusion of
human capital in utility.! In the real world, utility definitely depends on human
capital in the form of health. This relevant consideration has been paid little
attention in the growth literature. Yet it seems that the importance of health for
utility is comparable to the importance of consumption.

Human capital in the form of education can also contribute to utility. It is
plausible that education increases the quality of life even if one abstracts from the
effect of education on income.? For example, a lack of literacy prevents people
from reading books, thus decreasing the productivity of leisure in utility. Some
forms of education (such as in the field of history or philosophy) are not directly
productive in the real economy, but they contribute to a better orientation in the
world. Last but not least, one can consider the past experience of countries with
low rates of return on education (such as Eastern European countries during the

3 A relatively high demand for higher schooling in

period of central planning).
these countries probably reflects that education contributes to utility. Accord-
ing to the Soviet statistical yearbook (Narodnoye chozyaystvo SSSR, 1983), the
average monthly wages in the U.S.S.R. in 1980 were 127 roubles in the sector
of healthcare, physical training, and social security, 136 roubles in the sector of

national education, 111 roubles in the sector of culture, 135 roubles in the sector

1Ortigueira and Santos (1997) examine endogenous growth models in which human capital

increases the productivity of leisure in utility.
2The educational attainment index is (together with the life expectancy index and the

adjusted real GDP per capita index) used in the construction of the human development index

in the Human Development Report of the United Nations Development Programme.
3Filer, Jurajda, and Planovsky (1999) examine Czech and Slovak data and show that returns

on education substantially increased during transition towards a market economy.



of art, and 180 roubles in the sector of science. In comparison, the average wage
of industrial workers (for which the education is plausibly lower; engineers are
excluded) was 186 roubles. The observed negative rates of return on education
can be consistent with a rational behavior of individuals if human capital is a
source of utility.

Even for physical capital one can find some justification for including it in
utility. Long-run growth models typically work in a deterministic framework,
thus neglecting the aspects of uncertainty. In the real world with uncertainty,
physical capital can be accumulated in order to secure a reasonable level of con-
sumption in bad times (this precautionary motive of capital accumulation applies
if the third derivative of utility with respect to consumption is positive). This
phenomenon can be reflected in a deterministic framework if capital directly con-
tributes to utility. Rich people enjoy the fact that their physical capital provides
them with some level of security.®

Alternatively, physical capital can be valued because it provides individuals
with an option to make purchases across a variety of goods. The ability to make a
choice can be a source of utility even if no purchases are actually realized. Physical
capital extends the degree of freedom of individuals. A similar argument would
also apply for human capital: Educated people can make a choice over a larger
variety of jobs.

Another channel of the effects of capital on utility is via future expected
consumption. It is plausible that the present utility depends not only on the
present, consumption, but also on the future expected consumption. Rich people
may be happy because they know that their future consumption will be high. If I
knew that I would win a large sum of money in a lottery in two years, my present
utility would be high even though my present consumption was low (say because
of tight borrowing constraints).

The first model is a natural extension of the AK model (for the AK model,
see Barro and Sala-i-Martin, 1995, Chapter 4). Capital can be thought to be a
composite of human and physical capital. In this model, the presence of capital

in utility increases the growth rate of the economy. Similarly to the basic AK

4The role of money in utility (Sidrauski, 1967) could also be justified along these lines.
5This paragraph’s contents can be roughly expressed in a way that “securities provide

security.”



model, there are no transitional dynamics.

The second model is a straightforward extension of the Ramsey model. The
formula for the speed of convergence of the log-linearized model can be found ana-
lytically. The presence of capital in utility leads to a lower convergence coefficient
if utility is close to an additively logarithmic case.

Similarly to the first model, the third model is an extension of the AK model.
This model introduces an additional capital stock (human capital) that is as-
sumed to enter utility. In the model’s solution, physical capital, human capital,
output, and consumption grow at the same rate; there are no transitional dynam-
ics. An important feature of the model is an imbalance effect that arises if the
initial ratio of human to physical capital differs from its desired value. The model
predicts an immediate adjustment of the ratio of human to physical capital to
its steady-state value. In a more realistic framework with irreversibility restric-
tions and adjustment costs, the adjustment would be gradual, and the growth of
output would depend positively on the initial ratio of human to physical capital.
This is consistent with empirical observations.

The fourth model is a standard one-sector two-capital growth model that is
again extended by human capital contributing to utility. This model uses the
Cobb-Douglas production function and is more complicated than the previous
model. The analysis is focused on the steady-state solution. The presence of
human capital in utility tends to increase the steady-state growth rate.

The fifth model is an extension of the Uzawa-Lucas model (see Uzawa, 1965,
and Lucas, 1988) in which human capital enters into the utility function. The
analysis is focused on the steady-state solution, which describes the evolution of
the economy in the long run. It is possible to find a closed-form solution for
the steady-state growth rate, and it turns out that this growth rate increases if
human capital is included in utility.

The sixth model extends the Uzawa-Lucas model by adding physical capital
to utility. There is no change in the steady-state growth rate of the economy.

The seventh model is a two-sector model with three types of capital. The
type of capital that indicates access to education (called the educational capital)
enters into utility. The inclusion of the economy-wide level of this capital in
utility increases the steady-state growth rate of the economy in the planner’s

solution. The decentralized outcome is suboptimal and the social optimum can



be achieved if the educational capital is subsidized at the expense of lump-sum
taxes. The social optimum cannot be achieved if the subsidies to the educational
capital are financed by taxes on output.

Social planner’s solutions are considered throughout the paper. Because of
the absence of externalities, these solutions coincide with decentralized solutions
(with the exception of the seventh model). There is no population growth and no

technical change; individual variables can be interpreted as per capita variables.

2 One type of capital

2.1 An extended AK model

Let the production depend linearly on capital:
Y = AK, (1)

where Y is output, A is a technological parameter, and K is capital (plausibly a

composite of physical and human capital). The problem is to maximize
rngx/ e ’(InC +~1In K)dt
0
subject to
K = AK — 0K — C, (2)

where C'is consumption, p is the rate of time preference, + is a positive parameter,
and ¢ is the depreciation rate for capital. The present-value Hamiltonian for this

problem is
H=e"(InC+vyInK)+ ANAK — 6K — C), (3)

where A is the marginal shadow value of K. The first-order conditions are

e "/C =\, (4)
. OH
= —— = — _pt K - A .
A T ve /K + A6 — A) (5)
The transversality condition is
lim A\K = 0. (6)
t— 00



Table 1: The dependence of the growth rate on the weight of capital in utility in
the extended AK model for A = 0.1, 6 = 0.05, and p = 0.03.

~ 0 [02(04/06[08[1 2] 3|0
g (%) ||20]25]29|31(33[35|40]|4.3]5.0

In a steady state, all variables are required to grow at constant rates. From the
equation of motion for capital it follows that the ratio of consumption to capital
is constant in a steady state; hence capital and consumption grow at the same

rate. From the first-order conditions it follows that

A C

X:—VEWHS—A; (7)
C C

The equations of motion for capital and consumption imply that if the ratio of
consumption to capital differs from its steady-state value, it further deviates from
this value. Thus the steady-state solution is the only stable solution; there are
no transitional dynamics. The equality of the growth rates for consumption and

capital indicates that

C p
_— = — 9
K 1+ 9)
P
SR S 10
g 1+~ (10)

where ¢ is the common growth rate of consumption, capital, and output. Thus
the presence of capital in utility (the parameter ) tends to increase the growth
rate of the economy. Appendix A shows that this property is still satisfied if
utility is generalized to a constant elasticity of intertemporal substitution case.
Table 1 shows the dependence of g on v for A = 0.1, § = 0.05, and p = 0.03.

Even for small values of v the effect on growth is relatively important.

2.2 An extended Ramsey model

The problem is to maximize

max /oo e "(InC+~InK)dt
0
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subject to
K =F(K)—-J0K - C, (11)

where F'(K) is an increasing and strictly concave function. K is again a composite

of human and physical capital. The present-value Hamiltonian is
H=e(InC+yInK)+ \F(K) - 6K — (], (12)

where A is the marginal shadow value of K. The first-order conditions are

e /C = )\, (13)
: OH
_ " —pt - !
A K ve /K + A\ — F'(K)]. (14)
The transversality condition is
lim AK = 0. (15)
t— 00

Consumption and capital are constant in the steady state. The steady-state

values, C* and K™, satisfy
F(K")/K*=§+C"/K", (16)

0=—p+F'(K") =6 +~[F(K")/K" —d]. (17)

Let us consider the Cobb-Douglas production function:

F(K) = AK® (18)
For this function it holds that

o qee _ PT O+ 70

F(K*)/K* = Taty (19)
A a(p+9d+70
F'(K*) = (TV)’ (20)
" * * ala — 1 P + 6 + 7(5

F'(K")K* = ( iz(—|— 5 ). (21)

The equations of motion for capital and consumption can be log-linearized around
the steady state. In this approximation, the equations are:

din K
dt

= [F'(K") = 6] In(K/K") = [F(K")/K* = 6] In(C/C"),  (22)



dinC
dt

= {F"(K") K" =[F(K")/ K" =]} In(K/K*)+~[F(K")/ K" —4]In(C/C").

(23)
The solution to this system of two differential equations with constant coefficients
consists in finding the negative eigenvalue, — (the terms with the positive eigen-
value must be excluded for the transversality condition to be satisfied), of the

Jacobian matrix. Then the solution for capital is given by

In(K/K*) = 1In[K(0)/K*]e . (24)
Because the production function is Cobb-Douglas, a similar solution applies for
output:

In(Y/Y*) = In[Y(0)/Y*]e” ", (25)
where Y™ is the steady-state value of output. The convergence coefficient (3

satisfies

§— VPP +41—a)(p+3+70)(p+0 —ad)/(a+7) —p
= 5 .
From this it follows that 3 decreases with -, i.e., the presence of capital in utility

(26)

slows down the speed of convergence. It should also be noted that the extreme
case with v = 0 coincides with the formula for the speed of convergence presented
in Barro and Sala-i-Martin (1995, Chapter 2) (if one puts the technical change and
population growth equal to zero® and the elasticity of intertemporal substitution
of consumption equal to one).

To see quantitatively how 3 depends on v, I considered the specification p =
0.03 and 6 = 0.05. Table 2 shows the dependence if & = 0.75, which is a
realistic capital share if capital is viewed broadly (consisting of physical and
human components). Table 3 shows the same dependence if a = 0.30, which is a
capital share corresponding to narrowly viewed capital (physical capital only).

Appendix B shows that the decreasing dependence of 3 on the weight of
capital in utility is not precisely satisfied if utility is generalized to a constant
elasticity of intertemporal substitution case. Nevertheless,  still depends nega-
tively on the weight of capital if this weight is not very large and if the inverse

elasticity of intertemporal substitution is reasonably low (such as lower than 2).

If we introduced population growth (at the rate of n) and labor-augmenting technical
change (at the rate of z), then we would obtain exactly the same problem with ¢ replaced with
0 +n + x and p replaced with p — n. The speed of convergence would still depend negatively

on 7.



Table 2: The dependence of the convergence coefficient on the weight of capital
in utility for p = 0.03, 6 = 0.05, and a = 0.75.

0 0 1021040608 1 2 3 | o0
(%) |22]20[19|1.8|1.7[1.7]15|15]1.3

Table 3: The dependence of the convergence coefficient on the weight of capital
in utility for p = 0.03, = 0.05, and o = 0.30.

5 0 02/04[06[08] 1| 2|3 |
B(%)||96|7.7167|61|57 5447|4335

3 Two types of capital

3.1 One sector with an AK production

Let the production depend linearly on physical capital:
Y = AK, (27)

where Y is output, A is a technological parameter, and K is physical capital.

The problem is to maximize

max/oo e "(InC+~InH)dt
0

Cle

subject to
K = AK — 6K — C — Iy, (28)

H =1y —6H, (29)

where H is human capital and I is gross investment in human capital.” The

present-value Hamiltonian is

H=e"(InC+~yInH) + A\g(AK — 6K — C — Iy) + Ay (In — 6H),

"In this model, K may correspond to a composite of physical capital and the part of hu-
man capital that is productive (such as the knowledge of business administration). H then
corresponds to an unproductive part of human capital (such as the knowledge of philosophy,
philology, or history) that enhances utility.



where Mg and Ay are the marginal shadow values of physical and human capital,

respectively. The first-order conditions are:

e /C = g, (30)
- oH
A = —g—z = —e "v/H + 6\y. (33)

The transversality conditions are

lim K\ =0, (34)
lim H\y = 0. (35)

From the first-order conditions it follows that

C
—=A—-6— 36
C p7 ( )
Cry
' _A 37
H ) ( )
H
—=A-0- 38
7 2 (38)
K A H
—=A-0—-|—+A—p|—. 39
K (2ea-0)h (39)
In the steady state, the ratio of human to physical capital is constant and it
satisfies A =
T L A—pl= = 40
(7 + p> =7 (40)

If the ratio of human to physical capital is higher (lower, respectively) than the
steady-state ratio, the growth rate of physical capital is lower (higher, respec-
tively) than the growth rate of human capital. This cannot be an equilibrium
solution converging to the steady state. Thus the only plausible solution is the
steady-state solution; there are no transitional dynamics.

If the initial ratio of human to physical capital differs from its steady-state
ratio, there is an immediate adjustment of human and physical capital. If the

initial ratio of human to physical capital exceeds its steady-state value, human
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capital is immediately transformed into physical capital, and output increases. If,
on the other hand, the initial ratio of human to physical capital is below its steady-
state value, physical capital is immediately transformed into human capital, and
output decreases. These transformations are immediate because there are no
irreversibility restrictions or adjustment costs for investment. A more realistic
framework would require the introduction of irreversibility restrictions and/or
adjustment costs. In this case, the initial adjustment would be spread gradually
over time, and the initial growth of output would be positively related to the
initial ratio of human to physical capital; the model would exhibit an imbalance
effect.

A positive dependence of the growth rate on the ratio of human to physi-
cal capital is empirically plausible. Following Barro (1991), numerous empirical
studies have shown that for a given level of output, economic growth depends
positively on human capital. Economies with high H/K ratios, such as West
Germany and Japan after World War II, really tended to grow rapidly. On the
other hand, there is some evidence that growth was not fast if the H/K ratio was
low (see Hirshleifer, 1987, Chapters 1 and 2 for a discussion of the Black Death).
Additionally, T provide evidence (Duczynski, 2003) that in a sample of 73 coun-
tries for which I have data, the growth of per capita output between 1960 and
1990 depended significantly positively on the initial ratio of human to physical
capital.

An imbalance effect occurs in other growth models. Elsewhere (Duczynski,
2002) I show that the output growth rate in the log-linearized two-capital model
with perfect capital mobility, large adjustment costs for human capital, and small
adjustment costs for physical capital depends positively on the ratio of human
to physical capital. Barro and Sala-i-Martin (1995, Chapter 5) examine the
imbalance effects in one-sector and two-sector closed-economy models with two
types of capital. In the one-sector endogenous growth model with irreversibility
restrictions, the growth rate as a function of the H/K ratio is U-shaped: the
growth rate decreases with H/K if H/K is small and increases with H/K if H/K
is large. In the two-sector endogenous growth model (Uzawa-Lucas model), the
growth rate of the output of goods tends to be also U-shaped as a function of
H/K. However, the growth rate of broad output (the output of goods plus the

value of gross investment in human capital in units of goods) depends positively
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on H/K for a broad range of H/K. In this model, the imbalance effect occurs as
a result of the human-capital intensity of the educational sector. In comparison,
the imbalance effect in the model presented in this subsection is influenced by
diminishing marginal utility from human capital. If the ratio of human to physical
capital is large initially, utility benefits from human capital are outweighted by
production gains from physical capital; the economy invests intensively in physical
capital and the growth of output is fast. On the other hand, if the economy is
relatively human-capital scarce, it must invest some resources in unproductive
components of human capital (see footnote 7), which slows down the output

growth rate.®

3.2 One sector with a Cobb-Douglas production

The production of output is given by
Y = AK*H" . (41)

In other respects, the model is similar to the previous model. A corresponding
model with no human capital in utility is discussed in Barro and Sala-i-Martin

(1995, Chapter 5). The present-value Hamiltonian is
H=e"(InC+yInH)+ A\ (AK*H'™ — 6K — C — Iy) + \y(Iy — 0H).

The first-order conditions are

€_pt/0 = )\K, (42)
Ak = A, (43)

\ OH l-a
Ak = =z = Axld — aA(H/K) ™, (44)

8 A problematic aspect of the present model may be that H does not enter into production.
This assumption is abandoned in the following subsection. The following subsection examines a
model in which the steady-state ratio of human to physical capital is above this ratio in a model
with no human capital in utility. If the steady-state solution were the only solution, the given
model would exhibit a more satisfactory initial imbalance effect than a corresponding model
with no capital in utility (the initial output growth would depend positively on the initial H/K
ratio over a larger range of the initial H/K ratio). Nevertheless, I am not able to prove that

the steady-state solution is the only solution.
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OH e’y

)\H:—a—H—— I7 +0Ar — Ak (1 — @) A(K/H)* (45)
The first-order conditions lead to
C -
& = QA(H/K)" " =5, (46)
Cr)’ o 1—a —a
—7 = aA(H/K)" = (1 - o) A(H/K) ", (47)
H C d 11—« —a
7= 5 g WeAH/K) " — (1 - a)A(H/K) ], (48)

K 1-a H 1-a -
= = A(H/K)' ™ =6 - K—yhA(H/K) —(1-a)A(H/K)™*]—

o= S IMQA(H/K) " (1 ) AH/E) ). (49

The model is greatly complicated; therefore, the analysis is focused only on the

H -«
7 (e A(H/K)

steady-state solution. In the steady state, H/K is constant, and the growth rates
of H, K, Y, and C are the same. The equality of the growth rates of K and H
implies that

aA(H/K)'™* — p= A(H/K)' ™" - %[M(H/K)l_“ — (1= a)A(H/K)™"]—-

aA(H/K)' — ] (50)

Equation (50) implicitly determines the steady-state ratio of H to K. If v =0,
the steady-state ratio of H to K equals ©==%. Equation (47) implies that H/K >
=2 if v > 0. Equation (46) indicates that the steady-state growth rate of the
economy depends positively on H/K. Thus the presence of human capital in
utility increases the steady-state growth rate.’

Due to a relatively complicated structure of (50), it is not trivial to see whether
the steady-state growth rate is monotonically increasing with . I solved (50)
numerically for the following baseline specification: « = 0.3, p = 0.03, and A =
0.18 (the choice of A is such that the implied growth rates are not unrealistic).
The dependence of H/K on 7 is presented in Table 4. This table also presents the
implied steady-state growth rates, g (¢ is assumed equal to 0.05). The dependence

9Because the underlying model is symmetric regarding human and physical capital, one
can expect that the presence of physical capital in utility would also increase the steady-state

growth rate.
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Table 4: The dependence of the steady-state H/K ratio and the steady-state
growth rate on the human-capital parameter in utility in a one-sector model for

the baseline specification of parameters.

0 0 102(04]06]08]| 1 2 3 | o0
H/K ||23|25]26(27|28|29(3.0]31]34
g (%) 18]23(26|29|31(32]37]39]46

of H/K and g on 7 is clearly positive. Similarly to the extended AK model, the
effect of v on ¢ is important even for relatively small values of . T also examined
the dependence of H/K and g on + for the following one-variable departures from
the baseline specification: A = 0.16, A = 0.20, a = 0.25, o = 0.35, a = 0.40,
p = 0.02, and p = 0.04. For all of these specifications, H/K and ¢ depended

positively on 7 for the values of v shown in Table 4.

3.3 Two sectors with human capital in utility

This subsection presents a two-sector growth model that is derived from the
Uzawa-Lucas model. The present model effectively extends the Uzawa-Lucas
model by including human capital in utility. The analysis is focused on the
steady-state behavior of the model. Utility takes the same form as in the two
previous models. Physical capital is produced by a Cobb-Douglas production
function, whereas the human-capital sector uses human capital as the only factor
of production. Utility is maximized subject to the following dynamic budget

constraints:

K = AK*(uH)'"* - C - K, (51)
H=DB(1—-uH—-JH, (52)

where u is a variable between 0 and 1, and B is a positive parameter. K and
H are state variables, whereas u and C' are control variables. The present-value

Hamiltonian is

H=e"(InC+yInH)+ Ag[AK*(uH)'""® — C — §K] + A\g[B(1 — u)H — 6 H|.
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The first-order conditions are

e"’t/C = )\K, (53)
AR AK H'=*(1 — a)u™ = Ay BH, (54)
e = = = Ak (uH) - + ) (55)
K — 3K — N\K )
: 87{ —pt a, l-a -«
Ay = 5 = —e My /H = AgAK®u! (1= o) H* = Ag[B(1 —u) — 8] (56)

The transversality conditions are

Jim A K =0, (57)
Jim Ay H = 0. (58)

In the steady state, all variables grow at constant rates. From (52) it follows
that u is constant in the steady state. Equation (55) then implies that H/K is
constant in the steady state. In other words, the growth rate of K equals the
growth rate of H, which also equals the growth rate of output. Equation (51)
implicates that the C'/K ratio is constant in the steady state. Thus the growth
rate of consumption equals the growth rate of physical capital, human capital,

and output. Let ¢g denote this growth rate. From (53) it follows that

g=-p— - (59)

Equation (54) implies that the growth rates of Ax and Ay are identical. If A is
expressed from (54) and substituted in (56), we obtain

. —pt
AH:_eHV—AH(B—a). (60)

Equations (53), (54), and (60) imply

— = — (B —9). 1
Ay AK*H“ (1 — a)u© ( ) (61)
From equations (59) and (61) it follows that
vBC/K

g=B—-46—p+ (62)

AKe THY (1 — a)u=’

15



Equation (51) implicates that
C/K = AK* W'~ *H"™* —§ —g. (63)

From (55) and (59) we obtain
AaK* ' H' ™' = p+ g + 6. (64)

If (63) and (64) are substituted in (62), we have

yBual(p+g+6)/a— 6§ — g]

g=B—6—p+ 65
g D) )
From (52) it follows that
B—-—6§—g
U= (66)
If this is substituted in (65), we get
B—0— 0)/a— 0 —
923_5_p+7( g)allp+g+0)/a gl (67)

(I—a)p+g+9)

In the standard Uzawa-Lucas model with no human capital in utility (y = 0),
the growth rate equals B —d — p. From (67) we see that in the present model the
growth rate is higher, although it should not exceed B — ¢ (if g exceeded B — 0,
the fraction on the right-hand side of (67) would be negative, and, consequently,
the right-hand side of (67) would be below B —4, which is a contradiction). From
(67) it follows that g can be expressed in a quadratic equation. If only positive

roots are accepted, the solution to this quadratic equation can be written as

follows:
—ay + /a3 — 4a,a;3
g= 5 , (68)
a1
where
al = ]_ —|— ’)/, (69)
0—90
a2:2p+25—B—|—5’y—Bv—|—7p+1_7aa, (70)
4+ —da
a5 =—(B 36— p)(p+08) — (B -8 =2, (71)

-«
To see how the growth rate depends on ~, I tabulated the growth rates for the
following baseline specification: B = 0.1, 6 = 0.05, p = 0.03, and a = 0.3. Table

5 presents the growth rates for selected values of . The growth rate depends
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Table 5: The dependence of the steady-state growth rate on the human-capital
parameter in utility in the extended Uzawa-Lucas model for the baseline specifi-

cation of parameters.

g (%)1]20]25({29|32|34|36]4.1]43]5.0

positively on «, but it stays below B — ¢ = 0.05 for finite values of 7. Similarly
to the previous models, the effect of v on g is not negligible even if v is relatively
small.

I also checked whether g depends positively on « for the following one-variable
departures from the baseline specification: B = 0.09, B = 0.11, B = 0.12,
0 =0.04, 6 =0.06, p =0.02, p=0.04, « = 0.25, a = 0.35, and o = 0.40. For
these specifications, the dependence of g on v turned out to be positive for the

values of 7 shown in Table 5.

3.4 Two sectors with physical capital in utility

This subsection considers an extension of the Uzawa-Lucas model in which phys-
ical capital is included in utility. The analysis is focused on the steady-state

dynamics of the model. The present-value Hamiltonian is
e P (InC + pln K) + Ag[AK*(uH)'™® — C — §K] + A\g[B(1 — u)H — §H],

where p is a positive parameter, \x is the marginal shadow value of physical
capital, and Ay is the marginal shadow value of human capital. The first-order

conditions are

€_pt/0 = )\K, (72)
AR AKCH'"(1 — a)u™® = Ay BH, (73)
. o —pt
L )] (74)
Sy = _g_Z — ARAK U (1= ) = Au[B(1—u) —6).  (75)

From the equation of motion for H it follows that u is constant in the steady

state. The equations of motion for A\ and A can be simplified in the following
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way:

A _ (), (76)
i

)“K MC 1 1—

— = —"— — AaK*® H) ¢ .

Y e « (uH) " “+0 (77)

The growth rate of A is constant if C/K and H/K are constants. It then follows
from (73) that A and Ay grow at the same rate. Hence,
Y ¢ K H
Y ¢ K H o= p (78)
Thus the presence of physical capital in utility does not affect the long-run growth

rate of the economy.

4 Three types of capital

This section considers a model with three types of capital: physical capital,
human capital (both used in the production of physical goods), and educational
capital (used in the production of human capital and educational capital). The
educational capital is given by the quantity and quality of teachers, professors,
and scientists and reflects the general access to education in a given economy. It
is assumed that the access to education increases the quality of life in a given
economy, i.e., the economy-wide level of the educational capital (denoted by S)

is included in utility.!® The planner’s problem is

max /oo e (InC +vIn S)dt
0

Clg
subject to

K = AKH'"® — C — K, (79)

H=BS — Iy — §H, (80)

S =1Is—4S, (81)

190ne can also think that S contributes to the level of culture in a given society. In addition,
the setup of the problem is consistent with the notion that S reflects access to healthcare. It is
plausible that people value the access to healthcare.
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where Ig is gross investment in the educational capital.!! For simplicity, the
depreciation rates are assumed the same for all types of capital.
Assume first that the educational capital does not contribute to utility (v =

0).'? The present-value Hamiltonian is now
H=ec""In C—F)\K(AKaHlia—C—(SK)+)\H(BS—IS—6H)+)\S(IS—6S). (82)

The first-order conditions are

e Ak, (83)

C
A = As, (84)
A = Ag (0 — AaK* T HY®), (85)
A = =M AKY(1 — a)H “ + 6y, (86)
Ag = —AgB + \g0. (87)

The transversality conditions are

lim A K =0, (88)
lim Ay H = 0, (89)
lim A\gS = 0. (90)

From (85) it follows that K/H is constant in the steady state. The first-order
conditions imply that

A A
M5 —B=6—"ZAK*(1—a)H " (91)
)\H )\H

The constancy of the growth rate of Ay requires a constancy of the ratio of A\

to Ay. Thus the growth rate of the economy is given by

"'This model resembles the variant of the extended Uzawa-Lucas model in which the part of

human capital that is employed in the educational sector enters into utility. The difference is
that in the present model people benefit from the education of others (the economy-wide level
of S).

12This case corresponds to the decentralized solution because individuals cannot affect the

economy-wide level of S.
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Assume now that v > 0. The condition (87) is now modified:

. e_ptf)/

Ag = —AgB + \gd —
s HD + Ag g

(93)

Thus the presence of S in utility decreases the growth rate of Ag (or, equivalently,
increases the growth rate of the economy). Again, K/H and Ax /Ay are constants
along the steady state. The equality of the growth rates of Ay and Ay implies
that

(1-a)K
= Ag———. 4
At = Ak (94)
The growth rate of Ay now can be expressed in two ways:
by CyaH
—=0—-B— ——— 95
)\H (1 — O!)SK, ( )
AH a—1ryl—a
— =0—aAK* "H “. (96)
An

Equation (95) implies that the growth rate of S equals the growth rate of C'. The
equation of motion for physical capital implies that the growth rate of C' equals
the growth rate of K in the steady state. Let g denote this growth rate of the
economy. The equality of the growth rates of H and S implies that

BS?
I = ) 97
ST S+ H (97)
From this it follows that
__ B (98)
I=1+mH/S

Thus the growth rate of the economy does not exceed B — §. From equations
(83), (95), and (96) it follows that

CyaH

=B—-§— S
7 g p+(1—oz)SK’

(99)

g=aAK* "H'™® —§ —p. (100)

Equation (99) implies that ¢ is higher than in a corresponding model with no

capital in utility. The equation of motion for physical capital can be rewritten as

g=AK*'H'"*-C/K — . (101)
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Table 6: The dependence of the steady-state growth rate on 7 for the baseline

specification in the planner’s solution to the three-capital model.

0 0 102(04]06]08]| 1 2 3 | o0
g (%) ]20]27(31|34|36|38[42]44]5.0

From the above equations, g can be expressed in a quadratic equation equivalent

to
9=B-0—ptyyllg+d+p)fa—g-0B/(g+6) 1. (102

The positive solution takes the form

_ —az+ \/ a3 — 4daja;s (103)

g_

2@1 ’
where
o =1+7, (104)
ap=20+p—B+dy—By+v[(p+9)/(1—-a)—da/(1—a), (105)
a3 = —(B =06 —=p)6 =7(B=9)[(p+0)/(1 —a) = da/(1 - a)]. (106)

The result resembles that of the Uzawa-Lucas model with human capital in utility.
Table 6 shows the dependence of g on ~ for the baseline specification B = 0.1,
0 =0.05, p =0.03, and a = 0.3. The dependence is clearly positive.

I also considered the following one-variable departures from the baseline spec-
ification: B = 0.09, B = 0.11, B = 0.12, § = 0.04, 6 = 0.06, p = 0.02, p = 0.04,
a =0.25, a =0.35, and a = 0.40. For all of these specifications, the dependence
of g on v was positive if v took the values shown in Table 6.

It is straightforward to show that the socially optimal solution is achieved in
the decentralized setup (in which the economy-wide level of S enters into utility
but is taken as given) if S is subsidized at an appropriate rate 7. Assuming this
subsidy is financed by lump-sum taxes, the problem is then equivalent to

max / e P In Cdt
0

Cils

subject to
K=AK*H"™ - C - 6K +71S —T, (107)
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H = BS — Ig — 6H, (108)

S =1Ig— 68, (109)

where the balanced-budget condition requires that 7S = T on the economy-wide

level. The first-order conditions lead to

Ha
B+7——— =aAH"*K*! 110
+TK(1 — ) « ’ (110)
g=aAH"*K* ! —§—p. (111)

From this it follows that the presence of subsidies to S increases the steady-
state growth rate of the economy. Subsidies to S can be chosen such that the
socially optimal growth rate of the economy is achieved. The ratios of all relevant
variables then correspond to the socially optimal case. The socially optimal
growth rate can also be achieved if subsidies to S are financed by taxes on output.
However, it can be shown that the ratios H/K and C'/K do not correspond to

the socially optimal ratios in that case.

5 Conclusion

This paper examines growth models in which some types of capital directly con-
tribute to utility. The inclusion of capital in utility seems especially attractive
for human capital: it is plausible that health and education improve the quality
of life even if one abstracts from their effects on income. One can also consider
that in the real world with uncertainty, both human and physical capital increase
welfare by providing a certain level of security.

The inclusion of capital in utility has several interesting effects. In the ex-
tended AK model, the growth rate is unambiguously increased if (composite)
capital is included in utility. On the other hand, in the extended Ramsey model
with logarithmic utility, the speed of convergence is decreased if capital enters
into utility. In addition, the paper considers extensions of standard one-sector
and two-sector growth models with multiple capital goods and additively loga-
rithmic utility. The inclusion of human capital in utility (as well as the inclusion
of physical capital in utility) increases the steady-state growth rate in a one-sector
two-capital growth model in which both types of capital are productive. In the

extended Uzawa-Lucas model, the presence of human capital in utility increases
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the steady-state growth rate, while the presence of physical capital in utility
leaves the steady-state growth rate unaffected. The steady-state growth rate is
increased in the planner’s solution to a three-capital two-sector model based on
the Uzawa-Lucas model if people value access to education (or access to health-
care). In this model, the growth rate in the decentralized setup is suboptimal; the
socially optimal solution can be achieved by subsidizing the educational capital
if the subsidies are financed by lump-sum taxes; however, the socially optimal
allocation is not achieved if the subsidies are financed by taxes on output.
Additionally, the paper shows that an extended AK model with human capital
in utility can exhibit an empirically plausible imbalance effect between human
and physical capital if the initial ratio of human to physical capital differs from
its steady-state value. If the model were extended with adjustment costs and
irreversibility restrictions for investment, it would predict a positive dependence
of output growth on the initial ratio of human to physical capital, which is a
more realistic implication than a corresponding U-shaped dependence in the one-
sector two-capital model with no human capital in utility. The extended AK
model is imperfect in the sense that human capital is not productive. If human
capital is productive, the presence of human capital in utility improves the initial
imbalance effect if we accept the conjecture that the steady-state solution is the

only solution in the one-sector two-capital model with human capital in utility.

Appendix A

Let the instantaneous utility function in the extended AK model be

(leuKu)170 -1
1—-6 ’

U(C, K) = (112)

where v is a parameter between 0 and 1, and 6 > 0 is the inverse of the elasticity
of intertemporal substitution of the composite of C' and K. The present-value

Hamiltonian is

(leuKl/)170 -1

H=e" - + MAK — 6K - C). (113)
The first-order conditions are
e " KYI0(1 — p)CUII=0T = ) (114)
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oH

\ Tt —pt(1-v)(1-0) prv(1-0)-1 N
A BT e ”"C K v+ A0 —A). (115)
From the first-order conditions it follows that
A K C
X——p—i—l/(l—0)?—1—[(1—1/)(1—9)—1]5, (116)
b\ v C
X__l—V?—HS_A’ (117)
C C v C
5[(1—1/)(1—9)—1] = p—y(l—9)(A—6)+5—A+V(1—9)? 1 % (118)
The equation of motion for capital is
K C
—=A-§—- —. 11
7 % (119)

The growth rate of C' depends positively on C'/K, whereas the growth rate of

K depends negatively on C'/K. If C/K departs from its steady-state value, it

further deviates from it. Thus the steady-state solution is the only solution. The

equality of the growth rates of C' and K implies that
C_p-(1-0)(4-0)
K v/(1—v)+6

(120)

The right-hand side must be positive and it depends negatively on v. Thus the

growth rate of the economy depends positively on v.

Appendix B

This appendix considers utility given by (112) in the extended Ramsey model.

The present-value Hamiltonian is

(Cl—uKu)1—0 -1

H=e" - + MAK® - 0K — C). (121)
From the first-order conditions it follows that
C C
5[(1—1/)(1—9)—1] = p+6+y(1—0)6—[V(l—@)—i—Oz]AKo"l—l—?[1/(1—9)—1//(1—1/)].
(122)

Consumption and capital are constant in the steady state. The steady-state value
of capital, K*, satisfies

p+o+ov/(1—v)
a+v/(1—v)

AK* ! = (123)
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The log-linearized equations of motion are now
K *a—1 * *a—1 *
K= (AaK — ) In(K/K*) — (AK — ) In(C/C™), (124)

[(1-v)(1—0) - 1] ={AK* —av(l — 0) + a(l —a) +v/(1 — )]+

Ql Q-

S[v(1—0)—v/(1—v)]}In(K/K*)+[v(1—0)—v/(1-v)|][AK** ! —6]In(C/C*).
(125)
The speed of convergence equals the absolute value of the negative eigenvalue of

the Jacobian matrix and is given by

atv/0lv) I(vae P

\/pQ _|_4(1 _ a) pti—ad pt+i+dv/(1-v)
f= 5

(126)

The negative dependence of  on v is still satisfied if # is not much larger than
1. For example, for the specification p = 0.03, a = 0.75, § = 0.05, and 0 = 2,
[ decreases with v initially, and it starts increasing with v only if v > 0.72.
Nevertheless, the dependence of $ on v is not strong; § = 1.31% is v = 0 and
B — 1.25% if v — 1. If, however, # = 3, then the given specification of the
other parameters leads to a positive association between ( and v if v > 0.10.
Coefficient [ then changes from 0.96% to 1.25% as v changes from 0 to 1.
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